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ABSTRACT
With the push for transparency and open data, many datasets and
data repositories are becoming available on the Web. This opens
new opportunities for data-driven exploration, from empowering
analysts to answer new questions and obtain insights to improving
predictive models through data augmentation. But as datasets are
spread over a plethora of Web sites, finding data that are relevant
for a given task is difficult. In this paper, we take a first step to-
wards the construction of domain-specific data lakes. We propose
an end-to-end dataset discovery system, targeted at domain ex-
perts, which given a small set of keywords, automatically finds
potentially relevant datasets on the Web. The system makes use
of search engines to hop across Web sites, uses online learning to
incrementally build a model to recognize sites that contain datasets,
utilizes a set of discovery actions to broaden the search, and applies
a multi-armed bandit based algorithm to balance the trade-offs of
different discovery actions. We report the results of an extensive ex-
perimental evaluation over multiple domains, and demonstrate that
our strategy is effective and outperforms state-of-the-art content
discovery methods.

CCS CONCEPTS
• Information systems → Web searching and information
discovery.
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1 INTRODUCTION
The increasing availability of datasets on the Web opens new op-
portunities for data-driven exploration, from deriving insights from
data to improving predictive models through data augmentation.
Consider the following example.
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Explaining Food Insecurity in Ethiopia. Despite the strong economic
gains over the past two decades, food insecurity persists in Ethiopia.
According to the United Nations World Food Programme, an esti-
mated 8 million people require food assistance and about 3.9 million
women and children are nutritionally vulnerable in Ethiopia [45].
A group of data scientists aims to construct predictive models
to explore potential causes and triggers for food insecurity. The
Ethiopian government shared with them data about population,
health, and income. But on the Web, there are many additional
datasets, including, for example, indicator data provided by the
World Bank and the Food and Agriculture Organization, which
cover different aspects of life in Ethiopia – from weather and
droughts to conflicts. By collecting and analyzing relevant datasets,
domain experts can gain additional insights and discover features
to construct predictive models that are robust and accurate. These
modes, in turn, can help inform interventions to avoid food insecu-
rity and mitigate its effects.

However, finding relevant datasets on the Web is challenging.
There is a large number of datasets spread across many differ-
ent data repositories and Web sites. As a point of reference, if we
consider urban data, there are over 200 repositories powered by
Socrata [56] containing many thousands of datasets (e.g., New York
City Open Data [16], Chicago Data Portal [39]). Recognizing this
challenge, Google took a first step towards improving findability
with Google Dataset Search (GDS), a search engine for datasets [10].
However, to have datasets indexed by GDS, data publishers must
include metadata using standard formats such as schema.org or
W3C’s DCAT [10]. Unfortunately, relying on metadata markup
leads not only to a limited coverage but also to a veracity problem:
up to 61% of web sites that provide schema.org/Dataset markup
on their web pages do not actually describe datasets [4]. Therefore,
an open question remains for domain experts: how to efficiently
discover all data relevant to a given domain of study or research
question, including datasets not indexed by Google Dataset Search.

One possible approach is to use a focused crawler [8, 12, 15,
18, 20, 35, 54, 57]. Instead of attempting to cover all Web pages, a
focused crawler searches for a target concept (or topic) while maxi-
mizing the number of on-topic pages it retrieves and minimizing
the number of irrelevant pages visited. Focused crawlers thus bring
many benefits: they lead to substantial savings in hardware and
network resources compared to searching the whole Web; they
make it cheaper to maintain the crawl up-to-date; crawls can go
deeper and obtain a better coverage for a given topic; and the de-
rived index, being focused, is more likely to return a higher fraction
of actually relevant pages, reducing the information overload for
the end user. Focused crawlers have been proven effective to ac-
quire topic-specific Web pages as well as to discover specific objects
inside Web pages, such as events [24, 28] and product information
[22, 49]. They leverage the page contents to determine relevance to
a topic and to harvest links that are used to expand the search. But
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crawling for datasets on the Web creates new challenges. Datasets
are often published in repositories and do not link to other datasets
or repositories. Therefore, we need new crawling strategies to find
regions of the Web that contain domain-specific datasets.

Another challenge comes from the complexity involved in config-
uring focused crawlers. To specify a topic, an expert must provide
both a set of seed URLs that serve as the starting points for the
crawl and a classifier to automatically recognize relevant content.
While finding seeds can be time consuming, the task of creating
an effective classifier is difficult and often out of reach for experts
without training in computing.
DSDD: A Usable Dataset Discovery Framework. In this pa-
per, we propose DSDD, an end-to-end system for domain-specific
dataset discovery on the Web. Because datasets are distributed over
disconnected regions of theWeb that cannot be reached by crawling
alone, we need mechanisms to jump to pages that serve as entry
points to dataset repositories. To address this challenge, our system
tries to mimic the manual and iterative process users follow to
discover relevant datasets: issue queries (e.g., "Ethiopia dataset") to
a search engine, visit the returned URLs, determine their relevance,
and refine the search (e.g., search for links related to one of the
relevant results). Our system automates this process and utilizes a
rich set of discovery actions to jump-crawl the Web, including key-
word and related search, supported by search engines, and forward
and backward crawling [13]. Since these actions have an associated
cost, including rate limits posed search engines, it is important to
maximize their benefit, i.e., the number of datasets they discover.
However, selecting the appropriate discovery actions is difficult
because the effectiveness of an action depends on multiple factors,
such as the domain of interest, seed pages, and keyword queries.
We propose an algorithm based on multi-armed bandits to dynam-
ically schedule the actions with the goal of attaining a balance
between the exploitation of productive regions and the exploration
of new regions that can increase the coverage and diversity of the
discovered datasets.

DSDD was inspired by DISCO [43], an approach to bootstrap
domain-specific search. Given a small set of seed web sites, DISCO
automatically expands the seed set. Similar to DISCO, our approach
employs discovery strategies including keyword and related search,
backward and forward crawling, and adapts a multi-arm bandit
based algorithm to balance the exploitation and exploration of dif-
ferent strategies. But different from DISCO, DSDD uses a classifier
to narrow down the set of candidates, automatically verifies these
candidates, and uses the verified results to update the classifier as
well as to extend the seeds set. This leads to significant improve-
ments as we discuss in Section 5.

DSDD attains usability by 1) requiring users to provide just a
small set of descriptive keywords for the domain of interest; and
2) applying online learning to incrementally and automatically
improve the classifier that determines which pages are potential
dataset repositories. This classifier is bootstrapped with manually
collected samples of open data portals, which provide an initial set
of features for pages that represent a dataset repository. At each
discovery iteration, the classifier identifies potential dataset repos-
itories, which are then verified by DSDD, i.e., the system checks
whether the identified repository actually leads to dataset pages.
The results of the verification are then used to automatically update

and improve the classifier. Unlike Web pages and objects inlined
in pages, datasets can be large. Therefore, it may not be feasible to
download and parse their contents at crawling time to determine
relevance. Even if the data are downloaded, determining their rele-
vance and quality is challenging [41, 44, 58, 60]. Therefore, our goal
is to maximize the number of dataset pages (and repositories) we
discover for a given domain, so that a rich data collection can be
assembled. After the datasets are collected, profiled and indexed by
a dataset search engine such as Auctus [11] or Find Open Data [62],
users will be able to pose a rich set of discovery queries [61] to iden-
tify which datasets are relevant for different tasks (e.g., improve a
machine learning model, augment an existing dataset). Information
about datasets found to be relevant could then be used to refine the
discovery process of DSDD.
Contributions. To the best of our knowledge, this paper proposes
the first system for automatic domain-specific discovery of datasets
on the Web that does not rely on web page annotations. Our main
contributions can be summarized as follows:

• We propose an end-to-end, usable framework to automati-
cally and efficiently discover domain-specific datasets (Sec-
tion 4).

• We adapt a multi-armed bandit-based algorithm to balance
the exploitation and the exploration of discovery actions, and
combine it with online classification to attain both usability
and efficiency. We show that this combination increases the
harvest rate for the discovery process (Section 4).

• We perform an extensive experimental evaluation using mul-
tiple domains, and present results which show that not only
does our approach lead to harvest rates that are nearly 100%
or higher compared to state-of-the-art domain-specific con-
tent discovery systems, but it also finds dataset pages that
are not indexed by Google Dataset Search (Section 5).

2 RELATEDWORK
Our work builds on large body of research from information re-
trieval on web crawling and document ranking, and from machine
learning on supervised classification and reinforcement learning
algorithms. In what follows, we review some of the relevant related
work in these areas.

2.1 Web and Focused Crawling
A general-purpose web crawler automatically collects information
from (all) web pages it reaches to be indexed by search engines. A
focused crawler, in contrast, aims to effectively build high-quality
collections of content relevant to specific topics [15]. It achieves
this objective by focusing the crawl on links that are most rele-
vant to the target topic and avoiding irrelevant ones. For example,
Chakrabarti et al. [14] leverages two classifiers to accelerate crawl-
ing: a baseline classifier trained on a topic taxonomy, and an online
classifier that continually learns from crawled data to improve
the classification precision. Focused crawling methods with online
learning strategies have been proposed to locate hidden-web entry
points [8] and find structured data [36]. A key feature that distin-
guishes crawling to discover datasets from other topics considered
in the focused crawling literature is that datasets on the Web are
not highly connected. As we show in our experiments (Section 5),
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traditional focused crawlers are not effective in this scenario and
attain low harvest rates. Our approach addresses this limitation by
leveraging search engines to discover crawling seeds and an online
classifier that improves future decisions by continuously learning
from verified sites.

2.2 Web Page Classification
A web page classifier is essential for focused crawlers to evalu-
ate the relevance of a web page and narrow down the crawling
boundary [48]. Different types of features have been used for web
page classification. URL-based features are used to classify web
pages in a fast way as they do not need to access the contents of
the web page [1, 27, 50]. Incorporating HyperText Markup Lan-
guage (HTML) tag or HTML structure features demonstrates the
improved classification accuracy [25, 53, 59]. In addition to features
on the web page to be classified, features can be utilized from its
neighbors, such as parent, sibling and child pages [17, 46, 47, 55]. In
this work, we focus on the features on the web page to be classified.
Because of the sparse distribution of relevant datasets on the Web,
it is inefficient, in terms of accuracy and time, to utilize features of
neighboring pages.

2.3 Exploration and Exploitation
The relation between the exploration of new opportunities and the
exploitation of existing certainties was first considered in organi-
zational learning problems [34]. In web crawling and web content
discovery, exploration often refers to the search for new relevant
pages from resources that are several steps away from the relevant
subset, and exploitation refers to the search of relevant pages from
resources known to be relevant [40].

The idea of exploitation and exploration has also been used in
the context of re-crawling for domain-specific content discovery,
where web pages from different domains can have very different
change rates over time [52]. Pham et. al. [42] proposed a method to
balance between the exploitation of re-crawling policies that yield
high discovery rates with the exploration of policies that may yield
low discovery rates in isolation but ultimately improve the overall
discovery rates over time when combined with policies that are
known to be good.

In our approach, we make use of several actions to find new
Web sites to jump to: forward links, backward links, related pages
and keyword queries. These techniques have been shown to be
effective for content discovery in different domains [13, 19, 20, 23,
37, 42, 43, 49]. Since the effectiveness of these strategies varies
for different domains and sites, we propose a multi-armed bandit-
based algorithm to balance the trade-offs of the exploitation of
high-rewarding discovery actions, and the exploration of actions
that have not demonstrated good performance in the past, but may
bring future rewards.

3 PROBLEM DEFINITION
Before presenting our approach, we first introduce concepts needed
to formally define the problem we address in this paper.

Definition 1. Dataset Page (DP). A dataset page 𝑝𝑑 is a web
page that contains at least one link to a dataset.

We consider dataset files that are typically used to store structured
data including, for example, CSV, TSV, JSON, XLS, XML, shapefiles
for spatial data, and file collections (e.g., ZIP and GZ).

Definition 2. Dataset Repository Entry Page (DREP). A web
page 𝑝𝑟 is a dataset repository entry page, if 𝑝𝑟 links directly or
indirectly (within 𝑘 steps) to a non-empty set of dataset pages 𝑆 =

{𝑝𝑑1, 𝑝𝑑2, ..., 𝑝𝑑𝑛 | 𝑛 ≥ 1}.

Note that this definition captures pages that serve as entry points
to data portals (e.g., NASA Open Data Portal [38] and World Bank
Open Data [6]), as well as other web pages from which datasets can
be discovered. For example, a researcher’s homepage that contains
links to dataset pages. Our system uses 𝑘 = 3 when checking if a
web page is a DREP. We choose this value based on our observation
that, in most open data portals we crawled, dataset pages can be
discoveredwithin three steps away from the entry page. Given these
definitions, we can define the problem addressed in this paper:

Definition 3. Domain-Specific Dataset Discovery. Given a
domain of interest, we aim to efficiently discover dataset repository
entry pages and dataset pages that are related to the domain.

4 DATASET DISCOVERY FRAMEWORK
In this section, we first provide an overview of our solution, and
then describe our system components in detail.

4.1 Solution Overview
We propose DSDD, a new end-to-end dataset discovery system.
Figure 1 shows the architecture of the system. A user starts by
providing a set of keywords that are descriptive of the domain of
interest. The system bootstraps the process by applying a set of
discovery actions, including keyword queries and related queries
using a search engine, and forward and backward crawling. Given
that the effectiveness of these actions varies for different domains
and sites, we developed an algorithm based on the multi-armed
bandits approach to balance the exploitation of high-reward discov-
ery actions and the exploration of actions that may lead to delayed
benefits (Discover, Sections 4.2 and 4.3, Algorithm 1 lines 5-9).

As new pages are discovered, to ascertain whether a page is a
DP (Definition 1), DSDD searches for links in the page that point to
a individual dataset (e.g., CSV, TSV, JSON, XLS, XML, shapefiles for
spatial data) or a collection of datasets (e.g., ZIP and GZ). Checking
whether a page 𝑝𝑟 is a DREP (Definition 2) can bemore expensive, as

Figure 1: The architecture of our dataset discovery system.
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Algorithm 1 Dataset Discovery Framework

1: procedure Dataset_Discovery(domain)
2: data_repos = ∅
3: analyzed_pages = 0
4: while analyzed_pages< 𝑘 do
5: if first iteration then
6: webpages = 𝑘𝑒𝑦𝑤𝑜𝑟𝑑_𝑠𝑒𝑎𝑟𝑐ℎ (domain)
7: else
8: act = 𝑠𝑒𝑙𝑒𝑐𝑡_𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦_𝑎𝑐𝑡𝑖𝑜𝑛()
9: webpages = 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 (act, top_repos)
10: potential_repos= 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 (webpages)
11: verified_repos, n_pages = 𝑣𝑒𝑟𝑖 𝑓 𝑦 (potential_repos)
12: analyzed_pages = analyzed_pages + n_pages
13: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (verified_repos)
14: data_repos = data_repos ∪ verified_repos
15: top_repos = 𝑟𝑎𝑛𝑘(data_repos)
16: dataset_pages = 𝑐𝑟𝑎𝑤𝑙 (data_repos)
17: return dataset_pages

this requires a recursive crawl to search for DPs that can be reached
from 𝑝𝑟 . Performing this check for a large number of candidate
pages can be prohibitively expensive, thus greatly reducing the
discovery harvest rate. Instead, we use a classifier to predict whether
a page is a repository entry page (Classify, Sections 4.4, Algorithm
1 line 10). This classifier is pre-trained with positive and negative
examples collected for general open-data portals.

Pages that are classified as DREPs are then verified (Verify,
Section 4.5, Algorithm 1 lines 11-13) to check whether they actually
lead to DPs. Using the outcome of the verification, we can apply
online learning and automatically improve the classifier at each
discovery iteration.

To bootstrap a new discovery iteration, we need a set of seed
pages. While all verified DREPs could be used as seeds, in practice,
using such a large set can be expensive. In addition, since search
engine APIs have a rate limit on requests, ideally, we should focus
on the best pages. As we discuss in Section 4.6, we introduce a
ranking function and select the top-k seeds (Rank, Algorithm 1
lines 14-15).

4.2 Discovery Actions
The goal of the Discovery component is to find new dataset repos-
itory entry pages (DREPs). We obtain links from entry pages col-
lected from dataset repositories, such as sibling pages, child pages,
related pages, and pages returned by keyword queries issued to
search engines using keywords extracted from the pages. In what
follows, we provide detailed descriptions of the discovery actions
used to obtain new pages.

4.2.1 Following Backward Links. For a given web page 𝑃 , a back-
ward link is a link in another web page that points to 𝑃 . The process
to find relevant pages from backward links is similar to that of find-
ing relevant papers through citations. Papers that are related are
usually cited together. Similarly, related web pages are frequently
referenced together [30]. As a result, searching backward links for

dataset repositories is likely lead to hubs with links to other reposi-
tories. We leverage search engine APIs to obtain backward links
from the selected web pages. From the retrieved backward links,
we collect their outlinks to discover additional dataset repository
pages.

4.2.2 Following Forward Links. Given web page, forward links are
the outlinks inside the page. For a web page 𝑃 that has been verified
as a dataset repository page, to focus the search on new sites, we
consider only the forward links that have a domain name that is
different from the domain of 𝑃 .

4.2.3 Related Pages. The related pages of a given web page 𝑃

are the pages returned by a search engine for the query 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 :
𝑃 . In practice, we have observed that many of the related pages
cannot be found by following backward and forward links. For
example, given the URL https://data.ny.gov, one of the results from
the query related:https://data.ny.gov is https://data.-austintexas.gov
which cannot be discovered through either backward or forward
search. Therefore, searching for related pages helps enrich our
discovery range.

4.2.4 Keyword Search. The keyword search obtains relevant web
pages by submitting keyword queries to search engine APIs. For
each page retrieved, we extract textual contents from the title, links
and the body. Then, we tokenize the extracted text and remove stop
words from the stop word list curated from pre-collected sample
web pages. We select the most frequent keywords to build keyword
queries. Furthermore, we concatenate the domain given by the user
and the data keywords to construct more precise keyword queries.
For example, cases and hospitalized are two terms extracted from
repository pages for the COVID dataset, but issuing queries with
these keywords individually rarely returns dataset repositories, let
alone COVID dataset repositories. After concatenating the selected
terms with COVID domain and the term dataset, the resulting key-
word queries COVID cases dataset and COVID hospitalized dataset
definitely return more web pages that are related to COVID dataset
repositories.

4.3 Bandit-Based Exploration and Exploitation
At each discovery iteration (Algorithm 1, line 8), DSDD must select
a discovery action to find new candidate pages. An important chal-
lenge is how select the action that maximizes the harvest rate and
coverage. If we stick to the same action when it shows good perfor-
mance, we can lose the opportunity to diversify the candidates and,
eventually, this may lead to a decrease the number of new dataset
repository pages the system can discover. This is an instance of the
dilemma between the exploitation of resources that are known to
be promising and the exploration of uncertain resources.

We use an approach based on multi-armed bandits, specifically
UCB1 algorithm [5], to address this challenge. Each discovery action
is an individual bandit arm. The goal is to select the arm consider-
ing both its accumulated reward and future potential. The UCB1
algorithm uses an upper confidence bound to measure this future
potential. The algorithm can be expressed as the following equation:

𝑠𝑐𝑜𝑟𝑒𝑡 (𝑎) = 𝑟 (𝑎) +

√
2𝑙𝑛(𝑛)
𝑛𝑡 (𝑎)

(1)
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where 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑎) is the score of the bandit arm (𝑎) at time 𝑡 , 𝑟 (𝑎)
is the average accumulated reward of discovery action 𝑎, 𝑛𝑡 (𝑎) is
the number of web pages bandit arm 𝑎 has discovered at time 𝑡 ,
and 𝑛 is the total number of collected web pages by all discovery
strategies. Intuitive, an action with low accumulated reward will
be explored at time 𝑡 if it gains a large amount of future potential.

Next, we define the reward of a discovery action 𝑟 (𝑎). If a web
page 𝑝 has been discovered, based on its features, the dataset repos-
itory page classifier will label it either as relevant or not. As a result,
the reward of 𝑝 is defined as:

𝑅𝑝 =

{
1 if 𝑝 is relevant
0 otherwise

(2)

If that a discovery action 𝑎 returns𝑚 web pages, its reward is:

𝑟 (𝑎) =
∑𝑚
𝑝=1 𝑅𝑝

𝑚
(3)

At each iteration, we calculate the score of each discovery action
based on these equations and select the one with the highest score.

4.4 Classifying Dataset Repository Entry Pages
As new pages are discovered, we could inspect them to determine
which are dataset repository entry pages. But doing this is expen-
sive, as we need to crawl the links in the page and subsequent pages.
Instead, we make use of a classifier to predict whether a page is a
repository entry page.

We treat the web page classification problem as a binary doc-
ument classification problem, and assign a positive or a negative
label to a web document. Web pages that are dataset repository
entry pages are labeled as positive, and all other pages are labeled
as negative. The classifier is pre-trained with manually collected
positive and negative samples of general open-data portals. These
samples serve as a starting point to help the classifier obtain fea-
tures that are representative of dataset repository entry pages. Then,
for different domains being crawled, we apply online learning to
incrementally improve this classifier by using discovered results to
update it. This online learning approach helps the classifier gradu-
ally capture domain-specific features of dataset repository pages.
Web Page Representation. Features in web page classification
are usually divided into two parts: features located on the page to
be classified, and features located on the neighbors of the page to be
classified, such as its child pages or parent pages [48]. In this work,
we only use features located on the page, as fetching features from
neighboring pages is expensive, and as our experimental results
show, this strategy is effective in practice. Specifically, we use the
textual content in the page, which includes title text, link text, and
body text. Our pre-processing pipeline consists of tokenization,
uniformly transforming the text to lower case, and removal of non-
alphabet terms and stop words. The pre-processed Web documents
are transformed into numeric vectors using TFIDF, which is a nu-
merical statistic that assigns weights to terms according to their
importance. TFIDF aims to identify terms in a collection of docu-
ments that are useful to determine the category of a document [32].
Among the various existing term-frequency variants, we choose
the augmented term frequency to mitigate the bias towards longer
documents [33]:

𝑡 𝑓 (𝑡, 𝑑) = 0.5 + 0.5 · 𝑓 (𝑡, 𝑑)
𝑚𝑎𝑥𝑡 ′∈𝑑 𝑓 (𝑡 ′, 𝑑)

(4)

where 𝑓 (𝑡, 𝑑) is the count of the term 𝑡 in the document 𝑑 .
Classification Model. The TFIDF feature vectors created for the
web pages are used as input for the classification model that decides
which of theseweb pages are potential dataset repository entry page.
We employ support vector machine (SVM) as the learning method,
since it is effective for sparse features and performs competitively
with state-of-art classifiers [33]. For the SVMmodel, we use a linear
kernel and set the regularization parameter to 1.0.

4.5 Verifying Dataset Repository Entry Pages
To obtain more accurate results and improve the dataset repository
entry page classifier with online learning, we need to verify which
entry pages predicted by classifier link, directly or indirectly, to
datasets. But crawling all subsequent pages from a given candidate
entry page is both costly and can be infeasible in practice. Instead,
we preform a partial crawl: starting from the given data repository
entry point, we restrict the depth the crawl to three, i.e., the crawler
searches pages within three hops of the starting page. We observed
that, in most dataset repositories, dataset pages can be reached
within three steps away from the entry page. During this in-site
crawl, for each page, we use regular expressions to check for URLs
that link to common dataset formats, that include but are not limited
to individual data files (e.g., CSV, TSV, JSON, XLS, XML, shapefiles
for spatial data) and collections of data files (e.g., ZIP and GZ).

Some dataset repositories contain large number of datasets,
which can occupy most of the frontier resources of the crawler.
This situation decreases the efficiency of the verification process,
because under a fixed amount of resources, fewer other potential
dataset repositories can be verified. Since our purpose in this step is
to quickly check which repository entry pages contain datasets, we
stop crawling the links from an entry page if a reasonable number
of dataset pages have been identified. In practice, we observed that
when few dataset pages were discovered from the entry page, the
files were often not data files (e.g., a CSV file containing a descrip-
tion of the website being crawled). Therefore, DSDD has a threshold
for the number of dataset files that are required to consider a given
link as a DREP. For the domains we considered, we observed that a
threshold of 10 was effective.

4.6 Selecting Seeds via Ranking
Since our end-to-end system is iterative, seed pages are needed for
each round of discovery. Using all verified entry pages as seeds is
expensive, and it may also exhaust the rate allowed by the search
engine API. In addition, it can hurt performance as less relevant
seeds can lead to fewer new DREPs.

To address this problem, we rank dataset repository entry pages
by an automatically generated query, and select the top-ranked ones
as seeds for next discovery iteration. This query is built on frequent
keywords extracted from domain-specific pages. For example, in the
COVID domain, the query can be COVID hospitalized cases deaths
data where hospitalized, cases, and deaths are top terms extracted
from the dataset repository pages we collected. We introduce the
ranking function we use below.

Ranking is a fundamental problem in information retrieval: search
systems rank a collection of documents, based on some criterion,
with respect to a given query. In our problem setting, documents
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are the contents of dataset repository entry pages that have been
verified (see Section 4.5), and the query is the one we built from
these entry pages. We used the BM25 [51] method as the ranking
function, which is a variation of the vector-space model based on the
probabilistic framework that shows good performance in multiple
document ranking tasks [9, 51].

5 EXPERIMENTAL EVALUATION
We evaluate the efficiency of our end-to-end system through a
detailed experimental evaluation. We examine the recall of different
discovery configurations and manually assess the retrieved results.
For each experiment we carried out, we introduce the evaluation
metrics and then present and discuss the results. We selected a
diverse set of social good domains to evaluate our system:

• Coronavirus (COVID): datasets relevant to study this infec-
tious disease caused by severe acute respiratory syndrome
coronavirus. These include, for example, daily new cases,
quarantine policies, and traffic flow changes.

• Ethiopia food security (Ethiopia): datasets helpful to analyze
the reasons behind the food insecurity and design corre-
sponding actions to mitigate its effects, such as Ethiopia
weather and energy datasets.

• Armed conflict (Conflict): datasets useful to analyze the fac-
tors contributing to violent conflicts and predict future possi-
ble collisions, such as economic conditions and degradation
of natural resources like water scarcity.

• Climate change (Climate): datasets relevant to study climate
changes and shifts in weather patterns around the world,
such as greenhouse gas emissions and El Niño–Southern
Oscillation.

• Equity in education (Education): datasets helpful to analyze
current education situation around the world, for example,
school enrollment rates of different genders and income
levels.

• Economic development (Economics): datasets useful to ana-
lyze and predict economic growth, such as macroeconomic
statistics and international trade statistics.

5.1 End-to-End System Performance
We evaluate the performance of our approach for domain-specific
dataset discovery, and compare it with other state-of-the-art domain-
specific content discovery systems. We select systems to compare
based on following criteria: the system (1) has similar, comparable
functionality (e.g., topic-specific crawlers), (2) is open-source, and
(3) is actively maintained or at least can be built successfully. Based
on these criteria, we selected the following two systems: ACHE [8],
focused crawler, and DISCO [43], a domain-specific content discov-
ery system.

To start the search, both systems require a list of seed web pages
that are relevant to the topic. For a fair comparison, we use the
verified results from our first iteration (keyword search) as the seeds
for both systems. We describe baseline methods and our methods
below. For each discovery method, we stop it once 50,000 pages are
analyzed. For conciseness, we use the following abbreviations for
themethod names: BD stands for bandit, OL for online learning, KW
for keyword, RL for related, BL for backlink and FW for forward.

ACHE: ACHE is an open-source focused web crawler [2, 8]. Given a
set of seed pages, it aims to maximize the number of relevant pages
discovered by prioritizing the unvisited links. We set the number of
crawled web pages per domain to 100 so that ACHE visit can visit
a larger number of different Web sites. ACHE is effective at finding
pages belonging to a given domain; and it does so by leveraging
the network topology of specific domains on the Web. However, it
lacks the ability to obtain relevant pages that are not connected to
pages it has visited – a feature that is important to discover datasets,
which are often disconnected.

DISCO: DISCO is an approach to bootstrap domain-specific con-
tent discovery [21, 43]. It uses a rank-based framework to mimic
the way users search on the Web, and combine search-based and
crawling-based discovery operations. We use the DISCO bandit
search setting which uses a multi-armed bandit algorithm to select
a search operator at each iteration among backlink search, keyword
search, related search and forward search. For the ranking function,
we chose Bayesian sets as it shows good performance and does not
require negative samples.

DSDD-BD: this is our system that includes a pre-trained classifier
(with online learning disabled) to determine which pages are poten-
tial dataset repository entry points, a verification step by crawling
potential pages, a ranking function to select top entry pages as
seeds, and a multi-armed bandit based approach to select discovery
actions that balance the exploitation of accumulated reward and
the exploration of future potential.

DSDD-BD+OL: this is our system that has the same settings as the
DSDD-BD, but with online learning enabled. The classifier learns
from the verified pages at each iteration.

DSDD-KW+OL: this discovery method has the same settings as
the DSDD-BD+OL, but instead of a multi-armed bandit approach,
the keyword search action is selected at each iteration.

DSDD-RL+OL: this discovery method has the same settings as the
DSDD-BD+OL, but instead of a multi-armed bandit approach, the
related search action is selected at each iteration.

DSDD-BL+OL: this discovery method has the same settings as the
DSDD-BD+OL, but instead of a multi-armed bandit approach, the
backward link action is selected at each iteration.

DSDD-FW+OL: this discovery method has the same settings as
the DSDD-BD+OL, but instead of a multi-armed bandit approach,
the forward crawling action is selected at each iteration.

As stated in the solution overview section, our system uses regu-
lar expression patterns to determine if a web page contains datasets.
We use the same regular expression patterns for all baseline meth-
ods. A web page is considered as a dataset page if it contains one
or more datasets (Definition 1), and it is considered as a dataset
repository entry page if dataset pages can be discovered from it
(Definition 2).

Figure 2 shows the number of dataset repositories discovered
versus the number of web pages analyzed during the discovery
process for the various systems and configurations. The DSDD-
BD+OL configuration performs uniformly better than the others for
all domains: it achieves nearly 100% higher harvest rate compared
to baseline methods. The plot shows that:
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Figure 2: Harvest rate of dataset repositories for different discovery methods.

• Online learning is effective and results in a higher harvest
rate (see the lines for DSDD-BD+OL and DSDD-BD), and

• for all the domains, DSDD-BD+OL consistently outperforms
other methods that are limited to a single discovery action
(e.g., DSDD-KW+OL).

For most domains, ACHE has the worst performance. Since
ACHE relies on theWeb network to crawl, it is not able find datasets
that are not reachable from the crawling seeds. DISCO performs
better than ACHE, but is less effective than our end-to-end system.
This can be explained in part by the fact that DISCO lacks the ability
to verify dataset repository entry pages and its rank-based model
cannot be incrementally improved.

5.2 Recall of Different Discovery Methods
Because it is impractical to obtain all relevant dataset repositories
as the ground truth for each domain, we compute the union of all
discovered DREPs from all discovery methods as an approximate
ground truth. Since DREPs are verified dataset repositories that
contain dataset pages, this approximate ground truth can serve as
a reasonable measure to compare the coverage of different discov-
ery methods. In addition to the discovery methods introduced in
Section 5.1, we include an additional baseline to this experiment:
SEARCH ENGINE: this method directly examines the results of
keyword queries returned by a search engine. In other words, this
method mimics the simple approach a human would use, without
additional steps such as classification, verification and ranking.
For example, given ‘COVID’ as the domain of interest, this method
issues ‘COVID data’ and ‘COVID datasets’ queries to a search engine

and collects the results. These results are then examined by a script
to check which of them contain dataset pages.

Let𝑀 denote the set of discovery methods
𝑀 = {DSDD-BD+OL, DSDD-KW+OL, DSDD-RL+OL,

DSDD-BL+OL, DSDD-FW+OL, SEARCH ENGINE}
𝑅𝑚 denote the DREPs discovered by method𝑚 ∈ 𝑀 , 𝑅𝑢𝑛𝑖𝑜𝑛 denote
the union of discovered DREPs by each method, and 𝑅𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
denote the intersection of DREPs discovered by the target method
𝑅𝑡 and DREPs discovered by all other methods. More formally, we
have:

𝑅𝑢𝑛𝑖𝑜𝑛 =
⋃
𝑚∈𝑀

𝑅𝑚 (5)

𝑅𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑅𝑡

⋂
{∪𝑚∈𝑀 and𝑚≠𝑡𝑅𝑚} (6)

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
|𝑅𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 |

|𝑅𝑢𝑛𝑖𝑜𝑛 |
(7)

𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 =
|𝑅𝑡 | − |𝑅𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 |

|𝑅𝑢𝑛𝑖𝑜𝑛 |
(8)

Figure 3 shows the coverage of different discovery methods in
all domains. The intersection (in white) represents the percentage
of related dataset repositories that are also discovered by all other
methods, and the complement (in gray) represents the percentage
of related dataset repositories that are discovered only by the cor-
responding method. A higher intersection value means the corre-
sponding method attains a higher coverage. Each method explores
different parts of theWeb, and different discovered candidates result
in a different set of new (discovered) DREPs, which can increase
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Figure 3: Coverage for different discovery methods. A larger intersection value means that the corresponding strategy is able
to explore a wider range of the Web.

this discrepancy. As a result, no single method achieves absolutely
high coverage. In general, the DSDD-BD+OL method consistently
achieves the largest intersection among all domains. This suggests
that although each discovery action explores a different region of
theWeb, the DSDD-BD+OLmethod is able to attain higher coverage
by combiningmultiple actions using themulti-armed-bandits-based
approach.

5.3 Discovered Dataset Pages
In the previous sections, we focused on the discovery of dataset
repository entry pages. Here, we evaluate the effectiveness of differ-
ent methods in discovering pages that link to datasets (i.e., dataset
pages) and their relevance to the target domain. We also study the
availability of dataset metadata which is the main dataset discovery
mechanism used by web dataset search engines [10].
Number of Dataset Pages. As outlined in Algorithm 1, when the
number of analyzed pages reaches a preset limit (e.g., 50,000 in
our experiments), DSDD stops the iterative discovery process and
starts crawling for dataset pages from collected dataset repositories.
DSDD also stops the in-repository crawling process after certain
number of pages are retrieved (also 50,000 in our experiment). Ta-
ble 1 lists the number of dataset pages discovered by different

discovery methods. For conciseness, we abbreviate SEARCH EN-
GINE as SE, and remove the prefix DSDD for the variants of our
method (e.g., DSDD-FW+OL is listed as FW+OL in the table). The
DSDD-BD+OL strategy consistently retrieves the largest number
of dataset pages for all domains.

Quality of Dataset Pages. To measure the quality of discovered
dataset pages, we define the domain specificity metric. Given a
domain of interest 𝐷 , domain specificity is the ratio of dataset pages
related to 𝐷 over the total number of dataset pages. To reduce the
amount of manual labeling work required to compute this metric,
we estimate it by labeling randomly sampled pages from the list
output by Algorithm 1 (which is ranked with respect to the domain-
specific query). More specifically, we split the result list at different
percentiles (25%, 50%, and 75%), generating four disjoint parts. For
each part, we randomly select a sample of pages (with sizes from
10% to 15%) and manually check how many of them are related to
the given domain. Finally, we sum the different parts to calculate the
cumulative domain specificity at different list positions, as shown
in Table 2. We can see that for all domains, DSDD achieves a high
cumulative domain specificity, with most domains having similar
values, except for Ethopia, whose results are noisier.
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Table 1: Number of dataset pages retrieved by different discovery methods.

SE ACHE DISCO FW+OL BL+OL RL+OL KW+OL BD BD+OL

COVID 1756 771 1076 1526 916 1880 1859 2089 2454
Ethiopia 878 326 496 822 633 920 1188 1104 1424
Conflict 614 305 370 782 537 779 838 928 1117
Climate 1173 816 1281 1721 1622 2074 2169 2138 2548
Education 2284 1283 1824 2630 2124 2582 2628 2911 3164
Economics 1947 1192 1513 2163 1839 2507 2409 2477 2858

Table 2: Cumulative domain specificity for all domains.

Top 25% Top 50% Top 75% All

COVID 0.93 0.87 0.83 0.73
Ethiopia 0.82 0.76 0.66 0.61
Conflict 0.94 0.91 0.81 0.77
Climate 0.88 0.82 0.78 0.71
Education 0.90 0.86 0.81 0.74
Economics 0.85 0.81 0.76 0.70

Table 3: Percentage of discovered web pages that contain
dataset metadata markup annotations.

Domain Percentage

COVID 35.7%
Ethiopia 15.6%
Conflict 13.3%
Climate 12.8%
Education 10.9%
Economics 11.7%

Metadata and Markup Language Description. To detect the
presence of dataset metadata on web pages, we followed the exam-
ples in Google Dataset Reference [26] and wrote a script to detect
dataset metadata markup in all discovered dataset pages. We re-
port the fraction of dataset pages that provide metadata markup
descriptions in Table 3.

The results show that different domains have substantially dif-
ferent percentages of metadata coverage. For instance, the presence
of metadata markup in the COVID domain is more than two times
larger than in the domain with the lowest coverage (Education).
We believe this difference may be explained by (1) the fact that
most dataset pages in the COVID domain are new (since the global
outbreak started in early 2020), and (2) the incentives for publish-
ing datasets with metadata markups were created by the release
of Google Dataset Search in 2018, which only adds to their in-
dex datasets found in web pages that provide dataset metadata
markup [10]. By providing metadata markup, data publishers are
able to improve the discoverability and visibility of their datasets.
As a result, more dataset pages in the COVID domain are annotated
with markup language than other domains that have datasets that
have been published over a longer period of time.

Nonetheless, note that the percentage of pages that provide
metadata markup is still relatively low in all domains. Our findings
suggests that dataset search engines that rely solely on metadata
markup for dataset discovery are likely to miss many potentially
useful datasets for many domains.

6 CONCLUSION
In this paper, we propose DSDD, a system that enables domain-
specific dataset discovery on the Web. Given a set of domain key-
words, DSDD automatically discovers related datasets and data
repositories. DSDD introduces methods to iteratively discover, clas-
sify and verify potential dataset repository entry pages, as well
as rank the verified pages to select new seeds. We adapt a multi-
armed bandit algorithm to balance the exploration and exploitation
trade-offs in the selection of discovery actions, and by using online
learning to incrementally improve the classifier that identifies the
entry pages for data repositories, the approach automatically adapts
to different domains. Our experiments on different social-good do-
mains demonstrate the effectiveness of our framework compared
to state-of-the-art strategies: DSDD attains high coverage and ac-
curacy with little user input.

Determining the relevance of individual datasets, including data
quality, value, and suitability to a problem is a challenging prob-
lem [41, 44, 58, 60], for which a completely automated solution is
unlikely to exist. However, as users explore data collections through
a dataset search engine, there is an opportunity to obtain feedback
about the quality and relevance of datasets. In future research, we
would like to investigate how to capture and leverage this feedback
to improve discovery. Also, while DSDD can easily detect dupli-
cate URLs, detecting duplicate datasets is difficult as datasets can
be large and it is infeasible to download and parse their contents
at crawling time. In the future, we plan to explore methods for
detecting different URLs with similar text [3, 7, 29, 31].
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